Structural phase transitions in Bi2Se3 under high pressure

نویسندگان

  • Zhenhai Yu
  • Lin Wang
  • Qingyang Hu
  • Jinggeng Zhao
  • Shuai Yan
  • Ke Yang
  • Stanislav Sinogeikin
  • Genda Gu
  • Ho-kwang Mao
چکیده

Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi2Se3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and eventually to a high pressure body-centered tetragonal phase (SG: I4/mmm). Evidenced by our XRD data up to 81.2 GPa, the Bi2Se3 crystallizes into body-centered tetragonal structures rather than the recently reported disordered body-centered cubic (BCC) phase. Furthermore, first principles theoretical calculations favor the viewpoint that the I4/mmm phase Bi2Se3 can be stabilized under high pressure (>30 GPa). Remarkably, the Raman spectra of Bi2Se3 from this work (two independent runs) are still Raman active up to ~35 GPa. It is worthy to note that the disordered BCC phase at 27.8 GPa is not observed here. The remarkable difference in atomic radii of Bi and Se in Bi2Se3 may explain why Bi2Se3 shows different structural behavior than isocompounds Bi2Te3 and Sb2Te3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superconductivity of the topological insulator Bi2Se3 at high pressure.

The pressure-induced superconductivity and structural evolution of Bi2Se3 single crystals are studied. The emergence of superconductivity at an onset transition temperature (Tc) of about 4.4 K is observed at around 12 GPa. Tc increases rapidly to a maximum of 8.2 K at 17.2 GPa, decreases to around 6.5 K at 23 GPa, and then remains almost constant with further increases in pressure. Variations i...

متن کامل

GCMC Glauber dynamics study for structural transitions in YBCOx (0<x<1), HTc system

We have chosen an Ising ASYNNNI (ASYmmetric Next Nearest Neighbor Interaction)   model under a grand canonical regime to investigate structural phase transition from a high symmetric tetragonal (Tet) to a low symmetric orthorhombic in YBa2Cu3O6+x , 0<x<1,  HTc system. Ordering process for absorbed oxygens from an external gas bath into the basal plane of the layered system is studied by Monte C...

متن کامل

High-pressure phase transitions in ordered and disordered Bi2Te2Se.

We report studies of pressure-induced phase transitions of ordered and disordered ternary tetradymite-like Bi2Te2Se by synchrotron powder X-ray diffraction (PXRD) in diamond anvil cells (DACs) for pressures up to 59 and 49 GPa, respectively. The first sample (SB) was prepared from a single crystal with ordered Se/Te sites while the second sample (Q) was prepared from a quenched melt resulting i...

متن کامل

Structural phase transition and photoluminescence properties of YF3 and YF3:Eu3+ under high pressure.

We investigate high-pressure induced phase transitions of YF3 and Eu-doped YF3 (YF3:Eu(3+)) by using the angular dispersive synchrotron X-ray diffraction technique at room temperature. It is found that the starting orthorhombic phase transforms into a new high-pressure phase which is identified as hexagonal structure in both YF3 and YF3:Eu(3+). The high-pressure structure of YF3 and YF3:Eu(3+) ...

متن کامل

Structural phase transitions and photoluminescence properties of oxonitridosilicate phosphors under high hydrostatic pressure

Spectroscopic properties of a series of (Sr0.98-xBaxEu0.02)Si2O2N2 (0 ≤ x ≤ 0.98) compounds has been studied under high hydrostatic pressure applied in a diamond anvil cell up to 200 kbar. At ambient pressure the crystal structures of (Sr0.98-xBaxEu0.02)Si2O2N2 (0 ≤ x ≤ 0.98) are related to the ratio of strontium to barium and three different phases exists: orthorhombic Pbcn(0.78 ≤ x ≤ 0.98), t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015